EFFECT OF BLOWING ON THE RESISTANCE
OF A SPHERE IN LAMINAR FLOW OF VISCOUS FLUID

A. M. Golovin UDC 532.516

Using the method of matching asymptotic expansions [1-3],a stationary field of velocities is
obtained in the vicinity of a sphere for Reynolds numbers R and ¢R computed from the blow-
ing velocity and the fluid flow, respectively; they satisfy the relations eR® «1and eR « 1.

It is also shown that for intensive blowing (R > 1), the resistive force is considerably small-
er than that found by using the Stokes formula. For weak blowing the results are in good
agreement with the solution of Oseen.

The motion of fluid is governed bythe Navier —Stokes equations and the continuity equation which, as
it is known {4], yield the following equation for the stream function:
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In the above g is the sphere radius, v is the kinematic viscosity, ¥ and r are the dimensionless
stream functions and the distance to the sphere center, w is the fluid velocity at the sphere surface, vy and
vy are the components of the dimensionless velocity in the spherical coordinate system with the polar axis
along the direction of u, the velocity of the flow far away from the sphere. To change over to dimensional
quantities, one has fo replace r, vy, vy, ¥ by ar, wvp, wvg, and wa?¥, respectively.

The boundary conditions are
= —1c080,0¥/r=0 for r=1
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A solution of Eq. (1) with the boundary conditions (2) can be sought in the form

Y(r,08) = —cos 0+ e¥,(r, 0) -+ & ¥, (r, 6) + ...

Equation (1) then yields
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By setting
¥, (r, 0) =P, {z) sin?8, T, (r, 8) = P, (x) sin®*6cos 8 (r = Rz)

one can arrive at the equations
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The boundary conditions are now
b1 =, =0, diy/dx=dy,/ds=0foc z=1/R )
Py — Yy R%2% for z — oo 8)
1t follows from Eg. (5) that
far 2 : '
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up to an arbitrary constant Ay.
The other linearly independent solution of Eq. (5) is ignored since it leads to §; ~ x? for x — .

Equation (9) and the conditions (7) and (8) enable one to obtain
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Hence, it follows that for x > 1 and Rx > 1, one has
P, =1, R¥%*(1 — Y34,/ R%x)

For low blowing velocities (R <« 1) the above formula is identical with the stream function far away
from the sphere of radius r =1

Y =, R%* (1 — 3/ 2 Ra)

For intensive blowing (R > 1) the stream function far away from the sphiere is of the same form as
for the flow past the sphere of radius r ~ R(x ~ 1)

P, = Y, R%2* (1 — 1/x)
Moreover, the right-hand side of Eq. (6) can be evaluated,
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It can be shown that a solution of Eq. (6) which for x— = does not increase more rapidly than %%, is
given by the equation
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In the above A, is an arbitrary constant.

1t follows from Eg. (11) and the condition that i does not increase more rapidly than x? for x — < that
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The constants A, and By can be determined from the boundary conditions (7).
‘For x> 1 and Rx > 1 it follows from (12) that
Py = —1/gd; R?%? 13)
The solution (12) enables one to state that either for exR* ~ 1, or erR~ 1, the correction to the flow
function 52\112 is a quantity of the same order as £¥y.

Therefore, to find the outer expansion, one should introduce a radial coordinate, y = erR, and seek
the stream function in the form

W (r, 0) =1/, (4* /| eR%) sin?0 + ¥ (y, 6)
One then obtains for ¢ (y, §) the Oseen equation
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A corollary of Eq. (14) is
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where C is a constant.
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The solution of the above equation is given by

= — — _ y (1 —cos0)
cos8 — 2C (1 + cos 9){1 exp [_— --_2____]} (15)

The function (15) differs from the familiar solution [1-3] in regard to its leading term and is related
to the nonzero fluid flow on the sphere surface. .

- By writing the outer solution (15) in the inner variables and by expanding into series for small ¢R,
one can obtain

¥ = — cos 6 + Y/, R%?® sin®@ — CeR%z sin?

This solution is now matched with the solution (10) if C = 1/;;Ai/Rz.

Thus, the outer solution rewritten by using the inner variables is given by

eR2z
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The ratio of the second to the leading term of the series, for a fixed value of the outer variable & R’x,
is equal in regard tothe orderof the quantities to ¢R for R« 1, or to ¢R? for R >»1.

The outer solution (16) can be matched with an inner one which with an error of up to the order of &2
inclusive should be selected in the form

¥ = — cos® 4 & (1 4 Ypedy) ¢, (z) sin?® + e, (z) sin® 0 cos 6

where ¥; and ¥, are described by the formulas (10) or (12), respectively.

The force acting on the sphere is determined by the momentum flow on its surface. The projection
of the force onto the velocity direction of the oncoming flow u is given by

Q = 2na? S [{(— o, — p +6,.") 0058 — 6,4 5in 0] sin 0 dB
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For a velocity distribution which is spherically symmetric the convective momentum transfer makes
no direct contribution to the integral.

To evaluate the resistive force Q it is sufficient to consider only those terms in pressure p which are
proportional to cos §. Other terms can be ignored either in view of antisymmetry of the function under the
integral signin (17) in regard tothe change from 4 to 7 —6, or as small quantities of the order of &°.

By using the Navier—Stokes equation, one can obtain
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with accuracy up to the terms of order 52, where the dots refer to terms which are not essential for the
computation of Q.

Similarly, when evaluating ¢p)' and o,.4' it only suffices to consider the terms
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The first step of this series in powers of ¢ was obtained previously in [5].
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For low velocity of blowing (R <« 1) the resistance force is identical with the Gseen formula,
Q = 6rpvau (1 4 3/seR) (19)
For intensive blowing, one has

Q = (8n/ R)pvau (1 + /,eR?) (20)

The region of applicability of the formula corresponds to e R« 1 which is equivalent to the require~
ment of low Reynolds numbers evaluated from the velocity of the flow past a sphere of effective radius
r ~ R. In that region the resistive force may be considerably lower than the one given by the Stokes for-
mula.
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